Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0131123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376261

RESUMO

During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.


Assuntos
Bacterioclorofilas , Complexo de Proteínas do Centro de Reação Fotossintética , Bacterioclorofilas/metabolismo , Espécies Reativas de Oxigênio , Islândia , Fotossíntese/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Bactérias/metabolismo , Oxigênio/metabolismo
2.
Folia Parasitol (Praha) ; 702023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722286

RESUMO

We provide the first ultrastructural evidence of the secretion of extracellular vesicles (EVs) across all parasitic stages of the tapeworm Schistocephalus solidus (Müller, 1776) (Cestoda: Diphyllobothriidea) using a laboratory life cycle model. We confirmed the presence of EV-like bodies in all stages examined, including the hexacanth, procercoids in the copepod, Macrocyclops albidus (Jurine, 1820), plerocercoids from the body cavity of the three-spined stickleback, Gasterosteus aculeatus Linnaeus, and adults cultivated in artificial medium. In addition, we provide description of novel tegumental structures potentially involved in EV biogenesis and the presence of unique elongated EVs similar to those previously described only in Fasciola hepatica Linnaeus, 1758 (Trematoda), Hymenolepis diminuta (Rudolphi, 1819) (Cestoda), and Trypanosoma brucei Plimmer et Bradford, 1899 (Kinetoplastida).


Assuntos
Cestoides , Infecções por Cestoides , Vesículas Extracelulares , Animais , Infecções por Cestoides/veterinária , Copépodes , Smegmamorpha
3.
Biochim Biophys Acta Bioenerg ; 1864(2): 148946, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455648

RESUMO

Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αß-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.


Assuntos
Gammaproteobacteria , Complexo de Proteínas do Centro de Reação Fotossintética , Microscopia Crioeletrônica , Gammaproteobacteria/química , Fotossíntese
4.
Proc Natl Acad Sci U S A ; 119(50): e2211018119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469764

RESUMO

Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.


Assuntos
Bacterioclorofilas , Lagos , Bacterioclorofilas/química , Lagos/análise , Prótons , Bombas de Próton , Ecossistema , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese
5.
Microorganisms ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917603

RESUMO

An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Tyrolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%). Its genomic DNA G + C content is 65.9%. Further, in silico DNA-DNA hybridization and calculation of the average nucleotide identity speaks for the close phylogenetic relationship of AAP5 and Sphingomonas glacialis. The high percentage (76.2%) of shared orthologous gene clusters between strain AAP5 and Sphingomonas paucimobilis NCTC 11030T, the type species of the genus, supports the classification of the two strains into the same genus. Strain AAP5 was found to contain C18:1ω7c (64.6%) as a predominant fatty acid (>10%) and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, six unidentified glycolipids, one unidentified phospholipid, and two unidentified lipids. The main respiratory quinone was ubiquinone-10. Strain AAP5 is a facultative photoheterotroph containing type-2 photosynthetic reaction centers and, in addition, contains a xathorhodopsin gene. No CO2-fixation pathways were found.

6.
NanoImpact ; 22: 100315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559972

RESUMO

Nanomaterials (NMs) taken up from the environment carry a complex ecocorona consisting of dissolved organic matter. An ecocorona is assumed to influence the interactions between NMs and endogenous biomolecules and consequently affects the formation of a biological corona (biocorona) and the biological fate of the NMs. This study shows that biomolecules in fish plasma attach immediately (within <5 min) to the surface of SWCNTs and the evolution of the biocorona is a size dependent phenomenon. Quantitative proteomics data revealed that the nanotube size also influences the plasma protein composition on the surface of SWCNTs. The presence of a pre-attached ecocorona on the surface of SWCNTs eliminated the influence of nanotube size on the formation and evolution of the biocorona. Over time, endogenous biomolecules from the plasma partially replaced the pre-attached ecocorona as measured using a fluorescently labelled ecocorona. The presence of an ecocorona offers a unique surface composition to each nanotube. This suggests that understanding the biological fate of NMs taken up from the environment by organisms to support the environmental risk assessment of NMs is a challenging task because each NM may have a unique surface composition in the body of an organism.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Animais , Proteínas Sanguíneas/metabolismo , Nanotubos de Carbono/toxicidade , Proteômica
7.
Plant Cell Physiol ; 62(1): 178-190, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33258963

RESUMO

Photosystem II (PSII) is a large membrane protein complex performing primary charge separation in oxygenic photosynthesis. The biogenesis of PSII is a complicated process that involves a coordinated linking of assembly modules in a precise order. Each such module consists of one large chlorophyll (Chl)-binding protein, number of small membrane polypeptides, pigments and other cofactors. We isolated the CP47 antenna module from the cyanobacterium Synechocystis sp. PCC 6803 and found that it contains a 11-kDa protein encoded by the ssl2148 gene. This protein was named Psb35 and its presence in the CP47 module was confirmed by the isolation of FLAG-tagged version of Psb35. Using this pulldown assay, we showed that the Psb35 remains attached to CP47 after the integration of CP47 into PSII complexes. However, the isolated Psb35-PSIIs were enriched with auxiliary PSII assembly factors like Psb27, Psb28-1, Psb28-2 and RubA while they lacked the lumenal proteins stabilizing the PSII oxygen-evolving complex. In addition, the Psb35 co-purified with a large unique complex of CP47 and photosystem I trimer. The absence of Psb35 led to a lower accumulation and decreased stability of the CP47 antenna module and associated high-light-inducible proteins but did not change the growth rate of the cyanobacterium under the variety of light regimes. Nevertheless, in comparison with WT, the Psb35-less mutant showed an accelerated pigment bleaching during prolonged dark incubation. The results suggest an involvement of Psb35 in the life cycle of cyanobacterial Chl-binding proteins, especially CP47.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/fisiologia , Estrutura Terciária de Proteína , Synechocystis/efeitos da radiação
8.
Int J Parasitol ; 51(5): 327-332, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33307002

RESUMO

We provided the first known evidence of the presence and release of extracellular vesicles in adults of important model tapeworm Hymenolepis diminuta. Two different subtypes have been observed on the surface of the worm and among the secretory products confirmed by several microscopical methods. Proteomic analysis revealed the presence of parasite-specific proteins as well as those of the host in purified extracellular vesicles. Among the protein cargo, we identified potential drug targets, vaccine candidates and H. diminuta antigens. Finally, the protein composition further revealed proteins participating in the endosomal complex required for transport-dependent biogenesis pathway.


Assuntos
Infecções por Cestoides , Vesículas Extracelulares , Hymenolepis diminuta , Hymenolepis , Animais , Interações Hospedeiro-Parasita , Proteômica
9.
mSystems ; 5(6)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33361324

RESUMO

Photoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.

10.
Toxins (Basel) ; 12(9)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942577

RESUMO

Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure-function studies on DNT and its interactions with airway epithelial layers.


Assuntos
Bordetella pertussis/enzimologia , Células Epiteliais/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Células 3T3 , Células A549 , Animais , Animais Recém-Nascidos , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Necrose , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Relação Estrutura-Atividade , Transglutaminases/genética , Transglutaminases/toxicidade , Transglutaminases/ultraestrutura , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/toxicidade
11.
Photosynth Res ; 142(2): 137-151, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31375979

RESUMO

Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.


Assuntos
Água Doce , Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Estramenópilas/metabolismo , Estramenópilas/efeitos da radiação , Diurona , Proteínas de Membrana/metabolismo , Pigmentos Biológicos/metabolismo , Espectrometria de Fluorescência , Temperatura , Tilacoides/metabolismo
12.
Photosynth Res ; 138(2): 139-148, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30006883

RESUMO

The soil chromophyte alga Xanthonema (X.) debile contains only non-carbonyl carotenoids and Chl-a. X. debile has an antenna system denoted Xanthophyte light-harvesting complex (XLH) that contains the carotenoids diadinoxanthin, heteroxanthin, and vaucheriaxanthin. The XLH pigment stoichiometry was calculated by chromatographic techniques and the pigment-binding structure studied by resonance Raman spectroscopy. The pigment ratio obtained by HPLC was found to be close to 8:1:2:1 Chl-a:heteroxanthin:diadinoxanthin:vaucheriaxanthin. The resonance Raman spectra suggest the presence of 8-10 Chl-a, all of which are 5-coordinated to the central Mg, with 1-3 Chl-a possessing a macrocycle distorted from the relaxed conformation. The three populations of carotenoids are in the all-trans configuration. Vaucheriaxanthin absorbs around 500-530 nm, diadinoxanthin at 494 nm and heteroxanthin at 487 nm at 4.5 K. The effective conjugation length of heteroxanthin and diadinoxanthin has been determined as 9.4 in both cases; the environment polarizability of the heteroxanthin and diadinoxanthin binding pockets is 0.270 and 0.305, respectively.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Estramenópilas/química , Carotenoides/química , Cromatografia Líquida de Alta Pressão , Conformação Proteica , Análise Espectral Raman
13.
Photosynth Res ; 135(1-3): 213-225, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28669083

RESUMO

We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.


Assuntos
Carotenoides/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Processos Fotoquímicos , Estramenópilas/metabolismo , Anaerobiose , Cinética , Espectrometria de Fluorescência , Fatores de Tempo
14.
PLoS Biol ; 15(12): e2003943, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253871

RESUMO

The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Fotossíntese/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Transferência Genética Horizontal , Filogenia
15.
Mol Plant ; 10(1): 62-72, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27530366

RESUMO

Formation of the multi-subunit oxygen-evolving photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the localization and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47), whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins additionally associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric photosystem I (PSI) and two PSII monomers as deduced from electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard culture conditions, the distribution of PSII complexes is similar in the wild type and in each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with the wild type, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light conditions and, especially, intermittent high-light/dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation.


Assuntos
Proteínas de Bactérias/metabolismo , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Mutação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/efeitos da radiação , Ligação Proteica , Synechocystis/genética , Synechocystis/efeitos da radiação
16.
Photosynth Res ; 131(3): 255-266, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27734239

RESUMO

Photosystem I (PSI) is a multi-subunit integral pigment-protein complex that performs light-driven electron transfer from plastocyanin to ferredoxin in the thylakoid membrane of oxygenic photoautotrophs. In order to achieve the optimal photosynthetic performance under ambient irradiance, the absorption cross section of PSI is extended by means of peripheral antenna complexes. In eukaryotes, this role is played mostly by the pigment-protein complexes of the LHC family. The structure of the PSI-antenna supercomplexes has been relatively well understood in organisms harboring the primary plastid: red algae, green algae and plants. The secondary endosymbiotic algae, despite their major ecological importance, have so far received less attention. Here we report a detailed structural analysis of the antenna-PSI association in the stramenopile alga Nannochloropsis oceanica (Eustigmatophyceae). Several types of PSI-antenna assemblies are identified allowing for identification of antenna docking sites on the PSI core. Instances of departure of the stramenopile system from the red algal model of PSI-Lhcr structure are recorded, and evolutionary implications of these observations are discussed.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Plastídeos/metabolismo , Rodófitas/metabolismo , Espectrofotometria Ultravioleta
17.
Sci Rep ; 6: 25583, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27149693

RESUMO

Spatial segregation of photosystems in the thylakoid membrane (lateral heterogeneity) observed in plants and in the green algae is usually considered to be absent in photoautotrophs possessing secondary plastids, such as diatoms. Contrary to this assumption, here we show that thylakoid membranes in the chloroplast of a marine diatom, Phaeodactylum tricornutum, contain large areas occupied exclusively by a supercomplex of photosystem I (PSI) and its associated Lhcr antenna. These membrane areas, hundreds of nanometers in size, comprise hundreds of tightly packed PSI-antenna complexes while lacking other components of the photosynthetic electron transport chain. Analyses of the spatial distribution of the PSI-Lhcr complexes have indicated elliptical particles, each 14 × 17 nm in diameter. On larger scales, the red-enhanced illumination exerts a significant effect on the ultrastructure of chloroplasts, creating superstacks of tens of thylakoid membranes.


Assuntos
Cloroplastos/metabolismo , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Diatomáceas/efeitos da radiação , Diatomáceas/ultraestrutura , Luz , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/efeitos da radiação , Tilacoides/ultraestrutura
18.
Photosynth Res ; 130(1-3): 137-150, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26913864

RESUMO

We present proteomic, spectroscopic, and phylogenetic analysis of light-harvesting protein (Lhc) function in oleaginous Nannochloropsis oceanica (Eustigmatophyta, Stramenopila). N. oceanica utilizes Lhcs of multiple classes: Lhcr-type proteins (related to red algae LHCI), Lhcv (VCP) proteins (violaxanthin-containing Lhcs related to Lhcf/FCP proteins of diatoms), Lhcx proteins (related to Lhcx/LhcSR of diatoms and green algae), and Lhc proteins related to Red-CLH of Chromera velia. Altogether, 17 Lhc-type proteins of the 21 known from genomic data were found in our proteomic analyses. Besides Lhcr-type antennas, a RedCAP protein and a member of the Lhcx protein subfamily were found in association with Photosystem I. The free antenna fraction is formed by trimers of a mixture of Lhcs of varied origins (Lhcv, Lhcr, Lhcx, and relatives of Red-CLH). Despite possessing several proteins of the Red-CLH-type Lhc clade, N. oceanica is not capable of chromatic adaptation under the same conditions as the diatom Phaeodactylum tricornutum or C. velia. In addition, a naming scheme of Nannochloropsis Lhcs is proposed to facilitate further work.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Estramenópilas/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Filogenia , Espectrofotometria Ultravioleta , Estramenópilas/genética , Espectrometria de Massas em Tandem
19.
Photosynth Res ; 128(1): 93-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26589322

RESUMO

Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed.


Assuntos
Proteínas de Bactérias/química , Chlorobi/química , Complexos de Proteínas Captadores de Luz/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Citoplasma/química , Membranas Intracelulares/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Microscopia Eletrônica de Transmissão , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
20.
Biochim Biophys Acta ; 1847(6-7): 534-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748970

RESUMO

The remarkable adaptability of diatoms living in a highly variable environment assures their prominence among marine primary producers. The present study integrates biochemical, biophysical and genomic data to bring new insights into the molecular mechanism of chromatic adaptation of pennate diatoms in model species Phaeodactylum tricornutum, a marine eukaryote alga possessing the capability to shift its absorption up to ~700 nm as a consequence of incident light enhanced in the red component. Presence of these low energy spectral forms of Chl a is manifested by room temperature fluorescence emission maximum at 710 nm (F710). Here we report a successful isolation of the supramolecular protein complex emitting F710 and identify a member of the Fucoxanthin Chlorophyll a/c binding Protein family, Lhcf15, as its key building block. This red-shifted antenna complex of P. tricornutum appears to be functionally connected to photosystem II. Phylogenetic analyses do not support relation of Lhcf15 of P. tricornutum to other known red-shifted antenna proteins thus indicating a case of convergent evolutionary adaptation towards survival in shaded environments.


Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Cor , Diatomáceas/fisiologia , Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Luz , Filogenia , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...